
Incremental Clustering and Dynamic Information Retrieval

MOSES CHARIKAR* CHANDRA CHEKURIt TOMAS FEDER$ RAJEEV MOTWANI$

Abstract

Motivated by applications such as document and image

classification in information retrieval, we consider the prob-
lem of clustering dynamic point sets in a metric space. We
propose a model-c~led incremental clustering which is based

on a careful analysis of the requirements of the information
retrieval application, and which should also be useful in other
applications. The goal is to efficiently maintain clusters of

small diameter as new points are inserted. We analyze sev-
eral natural greedy algorithms and demonstrate that they per-
form poorly. We propose new deterministic and random-
ized incremental clustering algorithms which have a prov-
ably good performance. We complement our positive res-
ults with lower bounds on the performance of incremental al-

gorithms. Finally, we consider tbe dual clustering problem
where the clusters are of fixed diameter, and the goal is to

minimize the number of clusters.

1 Introduction

We consider the following problem: as a sequence of

points from a metric space is presented, efficiently maintain
a clustering of the points so as to minimize the maximum
cluster diameter. Such problems arise in a variety of ap-
plications, in particular in document and image classification

“Department of Computer Science, Stanford University, Stanford, CA
94305-9045. E-mail: moses@cs. stanf ord. edu. Suppotied by NSF
AwardCCR-9357849, with matchingfunds from IBM, Mitsubishi, Scblum-
bergerFoundation, SheUFoundation, and Xerox Corporation.

tDepamnent of Computer Science, Stanford University, !Wurfoni, CA
94305-9045. E-mail: chekuri@cs. stanf ord. edu. Supported by
NSF Award CCR-9357849, with matching funds from IBM, Mitsubishi,
SchlumbergerFoundation, Shell Foundation, and Xerox Corporation.

tE-~]: tomas@theory. stanf oral. edu

~Departmentof Computer Science, Stanford University, Stanford, CA
94305-9045. E-mail: ra j eev@cs . stanf oral. edu. Supported by an
Alfsed P. Sloan Research FeUowship, an IBM Faculty PartnershipAward,
an ARO MURI Grant DAAH04-96- 1-004)7,and NSF Young Investigator
AwardCCR-9357849, with matchingfunds from IBM, Mitsubishi, Schlum-
berger Foundation, Shell Foundation, arrdXerox Corporation.

I’CIIUISSIOI1!0 Ill:lkt digil:[l,l::ll-dcopies ,~t’:111,11-p,lrl 01’1111s,Il:l(cli:ll Ji,l-

pel’soual or’ classroom ust is gmntcd J\itll,JIll Ik prolidcd lhol Ilw Ctq)ics

are not macie or distrihuttd Iiw pmlit or c,m]nmxial :id!tjnfnge. ihc copy.
.,

right nolwc, Ihc Illlc of Illc puhlic:lt ion and its iialc :Ippcnr. lid o,~licc is

givm lho[ccrpyrighl i< h! penniwion ot’ttw AL’kl, lnc T,, copy f,llk.nvisc.

10 rqwhlish. 10 posl on wrvcrs or 10 rcdislrilullc 10 Iisls. rtqilirts slxcitic
permissionand/or k
W()(”’ 97 H 1’0s0.I’e.xm (1s.4
Copyright 1997 ..\Chl O-X979I-XXK-6~97’05 .$3,50

for information retrieval. We propose a model called incre-
mental clustering based primarily on the requirements for the
information retrieval application, although our model should

also be relevant to other applications. We begin by analyzing
severaf natural greedy algorithms and discover that they per-

form rather poorly in this setting. We then identify some new

deterministic and randomized algorithms with provably good
performance. We complement our positive results with lower
bounds on the performance of incremental algorithms. We
also consider the dual clustering problem where the clusters
are of fixed diameter, and the goal is to minimize the num-
ber of clusters. Before describing our results in any greater
detail, we motivate and formalize our new model.

Clustering is used for data analysis and classification in a
wide variety of application [1, 12, 20, 27, 34]. It has proved
to be a particularly important tool in information retrieval for

constructing a taxonomy of a corpus of documents by form-
ing groups of closely-related documents [13, 16, 34, 35, 37,

38]. For this purpose, a distance metric is imposed over doc-
uments, enabling us to view them as points in a metric space.
The central role of clustering in this application is captured
by the so-called cluster hypothesis: documents relevant to a

query tend to be more similar to each other than to irrelev-
ant documents and hence are likely to be clustewd together.
Typically, clustering is used to accelerate query processing
by considering only a smrdl number of representatives of the
clusters, rather than the entire corpus. In addition, it is used
for classification [11] and has been suggested as a method for
facilitating browsing [9, 10].

The current information explosion, fueled by the avail-
ability of hypermedia and the World-wide Web, has led to
the generation of an ever-increasing volume of dat~ posing

a growing challenge for information retrieval systems to effi-
ciently store and retrieve this information [40]. A major issue
that document databases are now facing is the extremely high
rate of update. Several practitioners have complained that
existing clustering algorithms are not suitable for maintain-
ing clusters in such a dynamic environment, and they have
been struggling with the problem of updating clusters without
frequently performing complete reclustering [4, 5,6, 8, 35].
From a theoretical perspective, many different formulations

are possible for this dynamic clustering problem, and it is not
clear a priori which of these best addresses the concerns of
the practitioners, After a careful study of the requirements,
we propose the model described below.

626

Hierarchical Agglomerative Clustering. The clustering
strategy employed almost universally in information retrieval

is Hierarchical Agglomerative Clustering (HA C) [12, 34, 35,

37, 38, 39]. This is also popular in other applications such
as biology, medicine, image processing, and geographical in-

formation systems. The basic idea is: initially assign the rr
input points to n distinct clusters; repeatedly merge pairs of

clusters until their number is sufficiently small. Many in-

stantiation have been proposed and implemented, differing

mainly in the rule for deciding which clusters to merge at each
step. Note that HAC computes hierarchy trees of clusters
(also called dendogranzs) whose leaves are individual points

and internal nodes correspond to clusters formed by merging
clusters at their children. A key advantage of these trees is

that they permit refinement of responses to queries by moving

down the hierarchy. Typically, the internal nodes are labeled
with indexing information (sometimes called conceptual in-
formation) used for processing queries and in associating se-

mantics with clusters (e.g., for browsing). Experience shows
thatHAC performs extremely well both in termsof efficiency
and cluster quality. In the dynamic setting, it is desirable
to retain the hierarchical structure while ensuring efficient
update and high-quality clustering. An important goal is to
avoid any major modifications in the clustering while pro-
cessing updates, since any extensive recomputation of the in-

dex information will swamp the cost of clustering itself. The
input size in typical applications is such that super-quadratic
time is impractical, and in fact it is desirable to obtain close
to linear time.

A Model for Incremental Clustering. Various measures of
distance between documents have been proposed in the lit-
erature, but we will not concern ourselves with the details
thereofi for our purposes, it suffices to note that these dis-

tance measures induce a metric space. Since documents are
usually represented as high-dimensional vectors, we cannot
make any stronger assumption than that of an arbitrary met-
ric space, although, as we will see, our results improve in geo-

metric spaces.
Formally, the clustering problem is: given n points in a

metric space M, partition the points into k clusters so as to

minimize the maximum cluster diameter. The diameter of a
cluster is defined to be the maximum inter-point distance in
it. Sometimes the objective function is chosen to be the max-

imum cluster radius. In Euclidean spaces, radius denotes the
radius of the minimum ball enclosing all points in the cluster.
To extend the notion of radius to arbitrary metric spaces, we
first select a center point in each cluster, whereupon the ra-
dius is defined as the maximum distance from the center to
any point in the cluster. We will assume the diameter meas-

ure as the default.
We define the incremental clustering problem as follows:

for an update sequence of n points in M, maintain a collec-
tion of k clusters such that as each input point is presented,

either it is assigned to one of the current k clusters, or it starts
off a new cluster while two existing clusters are merged into

one. We define the pe~ormance ratio of an incremental clus-
tering algorithm as the maximum over all update sequences

of the ratio of its maximum cluster diameter (or, radius) to
that of the optimal clustering for the input points.

Our model enforces the requirement that al all times an

incremental algorithm should maintain a HAC for the points
presented up to that time. As before, an algorithm is free to

use any rule for choosing the two clusters to merge at each
step. This model preserves all the desirable properties of

HAC while providing a clean extension to the dynamic case.
In addition, it has been observed that such incremental al-
gorithms exhibit good paging performance when the clusters

themselves are stored in secondary storage, while cluster rep-
resentatives are preserved in main memory [32].

We have avoided labeling this model as the online cluster-

ing problem or referring to the performance ratio as a com-
petitive ratio [25] for the following reasons. Recall that in
an online setting, we would compare the performance of an

algorithm to that of an adversary which knows the update
sequence in advance but must process the points in the or-
der of arrival. Our model has a stronger requirement for
incremental algorithms, in that they are compared to ad-
versaries which do not need to respect the input ordering,

i.e., we compare our algorithms to optimal clusterings of
the final point set, and no intermediate clusterings need be
maintained. Also, online algorithms are permitted super-

polynomial running times. In contrast, our model essentially
requires polynomial-time approximation algorithms which

are constrained to incrementally maintain a HAC. It may be
interesting to explore the several different formulations of on-
line clustering; for example, when the newly inserted point
starts off a new cluster, we could allow the points of one old
cluster to be redistributed among the remaining, rather than
requiring that two clusters be merged together. The prob-

lem with such formulations is that they do not lead to HACS;
moreover, they entail the recomputation of the index struc-

tures for all clusters, which renders the algorithms useless
from the point of view of applications under consideration
here.

Previous Work in Static Clustering. The closely-related

problems of clustering to minimize diameter and radius are
also called pairwise clustering and the k-center problem, re-
spectively [2, 21]. Both are NP-hard [17, 28], and in fact

hard to approximate to within factor 2 for arbitrary metric
spaces [2, 21]. For Euclidean spaces, clustering on the line
is easy [3], but in higher dimensions it is NP-hard to approx-
imate to within factors close to 2, regardless of the metric
used [14, 15, 19, 29, 30]. The furthest point heuristic due
to Gonzalez [19] (see also Hochbaum and Shmoys [23, 24])

gives a 2-approximation in all metric spaces. This algorithm
requires O(kn) distance computations, and when the met-

ric space is induced by shortest-path distances in weighted
graphs, the running time is 0(n2). Feder and Greene [14]

gave an implementation for Euclidean spaces with running
time O(n log k).

627

Overview of Results. Our results for incremental clustering
show that it is possible to obtain algorithms that are compar-
able to the best possible in the static setting, both in terms of
efficiency and performance ratio. We begin in Section 2 by

considering naturalgreedy algorithmsthatchoose clustersto
merge based on some measure of the resulting cluster. We es-
tablish that greedy algorithms behave poorly by proving that
a Center-Greedy algorithm has a tight performance ratio of

2k – 1, and a Diameter-Greedy algorithm has a lower bound

of fl(log k). It seems likely that greedy algorithms behave
better in geometric spaces, and we discover some evidence
in the case of the line. We show that Diameter-Greedy has

performance ratio 2 for k = 2 on the line. This analysis

suggests a variant of Diameter-Greedy, and this is shown to
achieve ratio 3 for all k on the line. In Section 3 we present
the Doubling Algorithm and show that its performance ratio

is 8, and that a randomized version has ratio 5.43. While the
obvious implementation of these algorithms is expensive, we
show that they can be implemented so as to achieve amort-
ized time 0(k log k) per update. These results for the Doub-
ling Algorithm carry over to the radius measure. Then, in
Section 4, we present the Clique Algorithm and show that
it has performance ratio 6, and that a randomized version
has ratio 4.33. While the Clique Algorithm may appear to
dominate the Doubling Algorithm, this is not the case since
the former requires computing clique partitions, an INP-hard
problem, although it must be said in its defense that the clique
partitions need only be computed in graphs with k + 1 ver-
tices. While the performance ratio of the Clique Algorithm is
8 for the radius measure, improved bounds are possible ford-
dimensional Euclidean spaces; specifically, we show that the
radius performance ratio of the Clique Algorithm in fid im-
proves to zl(1 + /-), which is 6 ford = 1, and is.,
asymptotic to 6.83 for large d, In Section 5, we provide lower
bounds for incremental clustering algorithms. We show that

even for k = 2 and on the line, no deterministic or ran-
domized algorithm can achieve a ratio better than 2. We im-
prove this lower bound to 2.414 for deterministic algorithms
in general metric spaces. Finally, in Section 6 we consider the
dual clustering problem of minimizing the number of clusters
of a fixed radius. Since it is impossible to achieve bounded
ratios for general metric spaces, we focus on d-dimensional

Euclidean spaces. We present an incremental algorithm that
has performance ratio 0(2dd log d), and also provide a lower

bound of fl(log d/ log log log d).

Many interesting directions for future research are sug-
gested by our work. There are the obvious questions of
improving our upper and lower bounds, particularly for the
dual clustering problem. An important theoretical question

is whether the geometric setting permits better ratios than do
metric spaces. Our model can be generalized in many dif-
ferent ways, Depending on the exact application, we may
wish to consider other measures of clustering quality, such

as: minimum variance in cluster diameter, and the sum of
squares of the inter-point distances within a cluster. Then,

there is the issue of handling deletions which, though not
important for our motivating application of information re-

trieval, may be relevant in other applications. Finally, there is
the question of formulating a model for adaptive clustering,
wherein the clustering may be modified as a result of queries

and user feedback, even without any updates.

2 Greedy Algorithms

We begin by examining some natural greedy algorithms.

A greedy incremental clustering algorithm always merges
clusters to minimize some fixed measure. Our results indic-
ate that such algorithms perform poorly.

Definition 1 The Center-Greedy Algorithm associates a

center for each cluster and meqes the two clusters whose

centers are closest. The center of the old cluster with the

larger radius becomes the new cente~ It is possible to dejine
variants of Center-Greedy based on how the centers of the
clusters are picked but we restn”ct ourselves to this definition
for reasons of simplicity and intuitiveness.

Definition 2 The Diameter-Gwedy Algorithm always
me~es those two clusters which minimize the diameter of
the resulting merged cluste~

We can establish the following lower bounds on the per-

formance ratio of these two greedy algorithms. We omit the
proofs in this extended abstract.

Theorem 1 The Center-Greedy Algorithm has performance
ratio at least 2k – 1.

Theorem 2 The Diameter-G~edy Algorithm has pe#orm-
ance ratio at least ~ (log k), even on the line.

We now give a tight upper bound for the Center-Greedy

Algorithm. Note that for k = 3 it has ratio 5, but for larger
k its performance is worse than that of the algorithms to be

presented later.

Theorem 3 The Center-Greedy Algorithm has petjormance
ratio of 2k – 1 in any metric space.

Proofi Suppose that a set P of n points is inserted. Let
their optimal clustering be the partition S = {Cl, C/c},

with d as the optimal diameter. We will show that the dia-

meter of any cluster produced by Center-Greedy is at most
(2k - l)d.

We define a graph G on the set S of the optimal clusters,
where two clusters are connected by an edge if the min-
imum distance between them is at most d, where the distance

between two clusters is the minimum distances between
points in them. Consider the connected components of G.
Note that two clusters in different connected components
have minimum distance strictly greater than d. We say that

a cluster X intersects a connected component consisting of
the optimal clusters C’i,, . . ., Cl. if X intersects U~=l Ci,.

628

We claim that at all times, any cluster produced by Center-
Greedy intersects exactly one connected component of G.

We prove this claim by induction over n. Suppose the claim
is true before a new point p arrives. Initially, p is in a
cluster of its own and Center-Greedy has k + 1clusters, each

of which intersect exactly one connected component of G.
Since there are k + 1 cluster centers, two of them must be
in the same optimal cluster. This implies that the distance

between the two closest centers is at most d. If Xl and X2

are the clusters that Center-Greedy merges at this stage, the
centers of Xl and X2 must be at most d apart. Hence, both
clusters’ centers must lie in the same connected component of

G, say C. By the inductive hypothesis, all points in Xl and
X2 must be in C. Hence, all points in the new cluster Xl UXZ
must lie in C, establishing the inductive hypothesis.

Since each cluster produced by Center-Greedy lies in
exactly one connected component of G, the diameter is
bounded by the maximum diameter of a connected compon-

ent, which is at most (2k – 1)d. ■

For Diameter-Greedy in general metric spaces, we only

have the following weak upper bound; the proof is deferred
to the final version.

Theorem 4 Fork = 2, the Diameter-Greedy Algorithm has

a petfornumce ratio 3 in any metn”c space.

In spite of the lower bounds for greedy algorithms, they
may not be entirely useless since some variant may perform
well in geometric spaces. We obtain some positive evidence

in this regard via the following analysis for the line. The up-
per bounds given here should be contrasted with the lower
bound of 2 for the line shown in Section 5. The following
definitions underlie the analysis.

Definition 3 Given a set S of n points in the line, a t-
partition subdivides the interval between the first and last

points of S into t subintervals whose endpoints are in S.
The t-diameter of S is the minimum over all t -partitions of

the maximum interval length in a t-partition of S. The 1-
diameter is the diametec while the 2-diameter is the radius
of S where the center is constrained to be a point of S.

We define the following family of algorithms based on the
notion of the t-diameter.

Definition 4 The t-Diameter Greedy Algorithm metges

those two clusters which minimize the t-diameter of the
merged cluster Note that I-Diameter Greedy is the same as
Diameter-Greedy.

While Diameter-Greedy has ratio 2 for k = 2 and ratio

3 fork = 3, we can show a lower bound of f2(log k) on its
performance ratio on the line.

Theorem 5 The Diameter-Greedy Algorithm for the line has
pe~ormance ratio 2 for k = 2 and petjormance ratio 3 for
k=3.

Unlike Diameter-Greedy, we can show that 3-Diameter
Greedy has a bounded performance ratio on the line.

Theorem 6 The 3-Diameter Greedy Algorithm haspe@orm-
ance ratio 3 on the line.

Proof: In fact, we show that it produces a clustering with
3-diameter at most the optimal diameter, and the factor of
3 follows. Assume this holds before the last two clusters
are merged. Let 11, 12, Ik be the intervals in the optimal

clustering, with maximum diameter d. Let Cl, C2, Ck+l
be the current clusters, each with 3-diameter at most d, of
which two must be merged. If Ci starts in 1= and ends in lb,
letz~=b –a; notice thatzl+ . ..+zk+l<l–l. We
assume that if ci ends in lb then Ci+l starts in Ib; otherwise,
we could replace the argument in the k intervals Ij by an ar-

gument either in the first b intervals]1, Ib, if there are at
least b + 1 clusters Ci in this region, or in the last k – b inter-
vals~b+l, ..., Ik, if there are at least k – b+ 1 cument clusters

Ci in this region. Now, the bounds imply that for some i, we
have ~i + ~i+l < 2. If ~i = ~i+l = O, then the merging

of Ci and Ci+l is contained in a single interval Ij and has
diameter at most d. If say ~i = O and ~i+l = 1, then the
gap G between the two consecutive intervals Ij and Ij+l in-
volved is at most d, since Ci+l has 3-diameter at most d, so

the merger of Ci and Ci+l has 3-diameter at most d given by

the 3-partition lj, G, Jj+l. This completes the proof. ■

We comment briefly on the running time of this algorithm.

In the above proof, the 3-diameter of an interval may be re-
placed by an easily-computed upper bound: at the time of
creation of interval [a, b], let [z, y] be the gap containing (a +
b)/2, and let the upper bound be max(z – a, y – x, b – y).

Maintaining the n points sorted in a balanced tree, the run-
ning time is O(log n) for each of the n points inserted.

3 The Doubling Algorithm

We now describe the Doubling Algorithm which has per-
formance ratio 8 for incremental clustering in general metric

spaces. The algorithm works in phases and uses two paramet-
ers a and ~ to be specified later, such that cr/ (a – 1) ~ ~.
At the start of phase i, it has a collection of k + 1 clusters

Cl, cz, ..., ck+l and a lower bound di on the optimal clus-
tering’s diameter (denoted by OPT). Each cluster Ci has a
center ci which is one of the points of the cluster. The fol-

lowing invariants are assumed at the start of phase i: (a) for
each clusterCj, theradiusof Cj defined m maxP~ C, d(Cj,P)

is at most adl; (b) for each pair of clusters Cj and Cl, the
inter-center distance d(cj, c1) ~ di; and, (c) di ~ OPT.

Each phase consists of two stages: the first is a metging
stage in which the algorithm reduces the number of clusters

by merging certain pairs; the second is the update stage in
which the algorithm accepts new updates and tries to main-

tain at most k clusters without increasing the radius of the
clusters or violating the invariants (clearly, it can always do

so by making the new points into separate clusters). A phase
ends when the number of clusters again exceeds k.

629

Definition 5 The t-threshold graph on a set of points P =

{Pi, PZ. ,pn} is the graph G = (~, ~) such fhaf

(Pi, pj) E E ifandonly ~d(~i, ~j) ~ t,

The merging stage works as follows. Define di+ 1 = /?d; ,

and letG be thedi+l-threshold graphon thek+ 1cluster cen-
[erscl, cz, ..., Ck+1. The graph G is used to merge clusters

by repeatedly performing the following steps while the graph
is non-empty: pick an arbitrary cluster Ci in G and merge all

its neighbors into it; make ci the new cluster’s center; and,
remove Ci and its neighbors from G. Let c;, c;, CL be

the new clusters at the end of the merging stage. Note that it
is possible that m = k + 1 when the graph G has no edges,
in which case the algorithm will be forced declare the end of

phase i without going through the update stage.

Lemma 1 The pairwise distance between cluster centers
after the merging stage of phase i is at least di+ 1.

Lemma 2 The radius of the clusters after the merging stage
ofphuse i isatmost di+l + ~di s adi+l.

Ptwof Prior to the merging, the distance between two
clusters which are adjacent in the threshold graph is at most
d;+l, and their radius is at most adi. Therefore, the radius of

the merged clusters is at most

di+l + ~di s (1 + ~/~)di+l < ~di+l,

where the last inequality follows from the choice that a/ (a –

1) < /3. ■

The update stage continues while the number of clusters is

at most k. When a new point arrives, the algorithm attempts
to place it in one of the current clusters without exceeding the

radius bound ~di+l: otherwise, a new cluster is formed with
the update as the cluster center. When the number of clusters
reaches k+ 1, phase i ends and the current set of k + 1 clusters
along with di+l are used as the input for the (i+ 1)st phase.

All that remains to be specified about the algorithm is the
initialization. The algorithm waits until k + 1 points have ar-
rived and then enters phase 1 with each point as the center of
a cluster containing just itself, and with dl set to the distance
between the closest pair of points. It is easily verified that the

invariant hold at the start of phase 1. The following lemma
shows that the clusters at the end of the ith phase satisfy the

invariant for the (i + 1)st phase.

Lemma 3 The k+ 1 clusters at the end of the ithphase satisjj

the following conditions:

1.

2.

3.

The radius of the clusters is at most adi+ 1.

The pairwise distance between the cluster centers is at

least di+l.

di+l ~ OPT, where OPT is the diameter of the optimal

clustering for the current set of points.

Proof: We have It+ 1 clusters at the end of the phase since
that is [he terminating condition. From Lemma 2, the radius

of the clusters after the merging stage is at most adi+ 1 and
from the description of the update stage this bound is not vi-
olated by the insertion of new points. The distance between

the clusters centers after the merging stage is di+l, and a new
cluster is created only if a request point is at least di+l away

from all current cluster centers. Therefore, the cluster centers
have pairwise distance at least di+l. Since at the end of the

phase we have k + 1 cluster centers that are di+l apart, the
optimal clustering is forced to put at least two of them in the
same cluster. It follows that OPT > di+ 1. ■

Based on these lemmas, we make the following observa-
tions. The algorithm ensures the invariant that di ~ OPT at

the start of phase i. The radius of the clusters during phase i is

at most adi+ 1. Therefore, the performance ratio at any time

during the phase is at most 2~di+l/OpT ~ 2~,6di/OpT ~
2Q~. We choose a = /? = 2; note, this choice satisfies the
condition that a/(a – 1) s /3. This leads to the following
performance bound, which can be shown to be tight.

Theorem 7 The Doubling Algorithm has performance ratio
8 in any metric space, and this is tight.

An examination of the proof of the preceding theorem
shows that the radius of the clusters is within factor 4 of the

diameter of the optimal clustering, leading to the following
result.

Corollary 1 The DoubiingAigorithm haspe~ormance ratio

8 for the radius measure.

A simple modification of the Doubling Algorithm, in which
we pick the new cluster centers by a simple left-to-right scan,

improves the ratio to 6 for the case of the line.

While the obvious implementation of this algorithm ap-

pears to be inefficient, we can establish the following time
bound, which is close to the best possible.

Theorem 8 The Doubling Algorithm can be implemented to
run in O(k log k) amortized time per update.

Proofi First of all, we assume that there is a black-box

for computing the distance between two points in the met-

ric space in unit time. This is a reasonable assumption in

most applications, and in any case even the static algorithms’
analysis requires such an assumption. In the information re-
trieval application, the documents are represented as vectors
and the black-box implementation will depend on the vector
length as well as the exact definition of distance.

We now show how the Doubling Algorithm may be im-

plemented so that the amortized time required for processing
each new update is bounded by O(k log k). We maintain the

edge lengths of the complete graph induced by the current

cluster centers in a heap. Since there at most k clusters the
space requirement is 0(k2). When a new point arrives, we
compute the distance of this point to the each of the current

630

cluster centers, which requires O(k) time. If the point is ad-
ded to one of the current clusters, we are done. If, on the

other hand the new point initiates anew cluster, we insert into
the heap edges labeled with the distances between this new
center and the existing cluster centers which takes O(k log k)

time. For accounting purposes in the amortized analysis, we
associate log k credits with each inserted edge. We will show
that it is possible to charge the cost of implementing the mer-

ging stage of the algorithm to the credits associated with the

edges. This implies the desired time bound.

We can assume, without loss of generality, that the mer-
ging stage merges at least two clusters. Let t be the threshold
used during the phase. The algorithm extracts all the edges

from the heap which have length less than t.Let m be the
number of edges deleted from the heap. The deletion from
the heap costs 0(m Iog k) time. The t-threshhold graph on

the cluster centers is exact] y the graph induced by these m

edges. It is easy to see that the procedure described to find
the new cluster centers using the threshold graph takes time
linear in the number of edges of the graph, assuming that the
edges me given in the form of an adjacency list. Forming the
adjacency list from the edges takes linear time. Therefore, the
total cost of the merging phase is bounded by O(rn log k +

rn) = O(m log k) time. The credit of log k placed with each

edge when it is inserted in to the heap accounts for this cost,
completing the proof. ■

Finally, we describe a Randomized Doubling Algorithm
with significant y better performance ratio. The algorithm
is essentially the same as before, the main change being in
the value of dl which is the lower bound for phase 1. In the
deterministic case we chose dl to be the minimum pairwise
distance of the first k + 1 points, say x. We now choose
a random value r from [l/e, 1] according to the probability

density function 1jr, set dl to rx, and redefine /3 = e and
a = e/(e – 1). Similar randomization of doubling algorithms
was used earlier in scheduling [31], and later in other applic-
ations [7, 18].

Theorem 9 The Randomized Doubling Algorithm has ex-

pected performance ratio 2e z 5.437 in any metric space.
The same bound is also achieved for the radius measure.

Proofi Let a be the sequence of updates and let the op-
timal cluster diameter for a be TX, where x is the minimum
pairwise distance of the first k + 1 points. The optimal value
is at least x, hence T z 1. Suppose we choose dl = rx

for some r E (I/e, 1]. Let P. be the maximum radiusof the
clusters created for a with this value of r. Using arguments
similar to those in the proof of Theorem 7, we can show that

l+ldl/(e — 1), where i is thep, is at most di+l + ~d~ = e
largest integer such that di = ei-ldl = ei-lrx < OPT =

~z. Let i“ be the integer such that ei”’1 s T < ei” and

6 =-y/ei”. Then, p, ~ %whenr > J,andpv ~ e

when r ~ d. Let X; and X~ be indicator variables for the
the events [r < d] and [r > d], respectively. We claim that

the expected value of p, is bounded by

E[p,] s
/

1 rc~.c(e.l-; + .Y:) dr

I/e f5r(e – 1)

/

eOPT 1
.

‘(e – 1, I/e

(e.Yr- + X~)dr

eOPTb(e – 1) = eOpT——
cf(e – 1)

Therefore, the expected diameter is at most 2eOPT. ■

4 The Clique Partition Algorithm

We now describe the Clique Algorithm which has per-

formance ratio 6. This does not totally improve upon the
Doubling Algorithm since the new algorithm involves solv-
ing the NP-hard clique partition problem, even though it is

only on a graph with k + 1 vertices. Finding a minimum
clique partition is NP-hard even for graphs induced by points
in the Euclidean plane [17], although it is in polynomial time
for points on the line. Since the algorithm needs to solve the
clique partition problem on graphs with k + 1 vertices, this
may not be too inefficient for small k.

Definition 6 Given an undirected unweighed graph G =
(V, E), an l-clique partition is a partition of V = V* U V~ U

. U u such that the the induced graphs G[14]’s am cliques.
A minimum clique partition is an l-clique partition with the
minimum possible value of 1.

The Clique Algorithm is similar to the Doubling algorithm
in that it also operates in phases which have a merging stage
followed by an update stage. The invariants maintained by

the algorithm are different though. At the start of the ith
phase we have k+ 1 clusters Cl, C2, Ck+l and a value di

such that: (a) the radius of each cluster Cj is at most 2di; the

diameter of each cluster Cj is at most 3di; and, (c) di < OPT.

The merging works as follows. Let di+l = 2di. We form
the minimum clique partition of the di+l -threshold graph G
of the cluster centers. The new clusters are then formed by
merging the clusters in each clique of the clique partition.
We arbitrarily choose one cluster from each clique and make
its center the cluster center of the new merged cluster. Let

C!, C;,. . . . C(t be the resulting clusters. In the rest of the
phase we also need to know which old clusters merged to
form each of the new clusters.

Lemma 4 The radius of the clusters after the merging stage
is at most 2di+ 1 and the diameter is at most 3di+1.

Proofi Let Cj,, Cj,, Cjnj be the clusters whose

union is the new cluster C; and without loss of generality as-
sume that the center of Cj, was chosen to be the center of

C;. Since the centers of Cj,, Cj,, Cj~, induce a clique

in the di+ 1-threshold graph, the distance from the new center
to each of the old cluster centers is at most di+ 1. The radius

631

ofeachof(-j, .[; ,, ..., C’jn, is at most 2di. Therefore it fol-

lows that the new radius is at most d,+l + 2dz ~ 2di+l and
the diameter is at most 2di + d:+l + 2di < 3di+l. ■

During the update phase, a new point p is handled as fol-

lows. Let the current number of clusters be m, where li s

m s k. Recall that C{, Cj, C;, are the clusters formed
during the merging stage. If there exists j such that j >1,
and d(p, c;) s di+l, or ifj S ii and d(p, cj,) S cL+l where

C’j, is a cluster which merged to form C;, add p to the cluster

C;. If no such j exists, make a new cluster with p as the cen-
ter. The phase ends when the number of clusters exceeds k,
or if there are k + 1 clusters at the end of the merging phase.

The intuition behind the new algorithm is the following.

At the beginning of the phase we have k + 1 clusters and
a lower bound on the optimal. We use the lower bound to
increase the radius of our existing clusters and merge some

of them. To maintain the invariant for the lower bound in
the next phase we need to ensure during this merging that
the number of clusters we have after the merging is no more
that what the optimal algorithm can achieve using the lower
bound for the next phase. The doubling algorithm achieved
this by picking an independent set as the new cluster cen-
ters in the distance threshold graph, The weakness of this
approach is that we have a bound on the diameter, only as
a function of the radius of the new cluster. We get the im-
provement by observing that a better bound on the number

of clusters achievable by the optimal with diameter bounded
by di is the size of the minimum clique partition of the dis-
tance threshold graph. We still need a condition on the radius
in order to do the doubling, but now, since we use cliques, we
can bound the diameter of the new clusters better than twice
the radius.

The following lemmas show that the clusters at the end of
phase i satisfy the invariants for phase i + 1.

Lemma 5 The radius of the clusters at the end of the phase

i is at most 2di~ ~ and the diameter of the clusters is at most

3di+1.

Lemma 6 At the end of phase i, di+l ~ OPT.

~fi Suppose di+l > OPT. Let S = {CI, CZ, . . ., Q+I}

be the cluster centers at the beginning of the phase. Note that
the centers cj, ..., ~,c’ belong to S. Let S’ = {c; I j > 1~}

be the set of cluster centers of the clusters which are formed

in phase i after the merging stage. Since each of the centers
c; in S’ started a new cluster d(c~, p) > di+l for all p c
SUS’ – {c; }. Therefore in the optimal solution each center in

S’ is in a cluster which contains no center in S. l%is implies
that the centers in S are contained in at most li – 1 clusters
of diameter di+l. This is a contradiction since 1; WaS the size

of the minimum clique partition of the di+l -threshold graph
on S. 9

The diameter of the clusters during phase i is at most

3di+1 and we maintain the invariant that di s OPT at the
start of the phase. Therefore, the performance ratio of this

algorithm is at most 3d~+l /di ~ 6.

Theorem 10 The Clique Algorithm has performance ratio 6

in any metric space, and this is tight.

Since the radius of the clusters is within 4 of the optimal
diameter, we obtain the following corollary.

Corollary 2 The Clique Algorithm has performance ratio 8
in any metn”c space for the radius measure.

As in the case of the Doubling Algorithm, we can use ran-
domization to improve the bound. Let z be the minimum dis-
tance among the first k+ 1 points. The randomized algorithm
sets dl = rz in phase 1 of the deterministic algorithm, where
r is chosen from [1/2, 1] according to the probability density

function ~. The analysis is similar to that of Theorem 9

and we omit the details.

Theorem 11 The Randomized Clique Algorithm has per-

formance ratio ~ % 4.33 in any metn”c space.

Corollary 3 The Randomized Clique Algorithm has per-
formance ratio ~ x 5.77 for the radius measure in any
metric space.

The special structure of the clusters in the Clique Al-
gorithm can be used to show that the performance ratio for
the radius measure is better than 8 for the geometric case.

This is based on the following result in geometry; we defer
the proofs of the proposition and its consequence.

Proposition 12 Any convex set in Rd of diameter at most 1
can be circumscribed by a sphere of radius ?’d,where rd sat-
isfies the following recurrence with the base case rl =

‘d= Zk”

The solution to this recurrence is rd = ~m.

Theorem 13 The Clique Algorithm has pe~ornrance

1/2,

ratio
4(1 + r~) for the radius measure in Rd. This implies perform-
ance ratio 6ford = 1, 6.3 ford = 2, and 6.83 asymptotically

for large d.

5 Lower Bounds

We present some lower bounds on the performance of in-
cremental clustering. The lower bounds apply to both dia-
meter and radius measures but our proofs are given for the
diameter case. The following theorem shows that even for
the simplest geometric space, we cannot expect a ratio better
than 2; the proof is omitted.

Theorem 14 For k = 2, there is a lower bound of 2 and

2 – l/2kl 2on thepe~onnance ratio of deterministic and ran-

domized algorithms, respectively, for incremental clustering
on the line.

632

In the case of general metric spaces, we can establish a

stronger lower bound.

Theorem 15 There is a lower bound of 1 + W % 2.414 on
the pe~ormance ratio of any deterministic incremental clus-

tering algon”thmfor arbitraV metn’c spaces.

PI-oofi Consider a metric space consisting of the points

~ij,1 < ~,~ < 4,~ # ~. The distances between the points
are the shortest path distances in the graph with the following
distances specified: d(P:j, pji) = 1, and ~(pijl, pijz)=W.

Let Bi = {Pij I 1 ~ j ~ 4, i # j}. Note that the sets
Bi, 1 s i s 4, partition the metric space into 4 clusters

of diameter W. Let A be any deterministic algorithm for
the incremental clustering problem. Let k = 6. Consider

the clusters produced by A after it is given the 12 points pi~
described above.

Case 1: Suppose the maximum diameter of A’s clusters is
1. Then A’s clusters must be the 6 sets {pij, pji }. Now the

adversarygives a point q such that d(g, pii) = 10 (any large
number will do) for 1 < i, j < 4. The optimal clustering is

{q} and the sets B1, B2, B3, BA. The optimal diameter is
W. We claim that the maximum diameter of A is at least
2+ W. If the cluster that contains q contains any other point
then our claim is clearly true. If on the other hand, the cluster
that contains q does not contain any other point, A must
have merged two of its existing clusters. Then themaximum
diameter of A’s resulting clusters is at least 2 + W. Thus

the performance ratio of A is at least 1 + W.

Case 2: Suppose the maximum diameter of A’s clusters is
greater than 1. Then some cluster of A contains 2 points
which are at least distance W apart. Let these points be puz

and pg., (w, x) # (z, y). Now the adversary gives 6 points
) = 1.Tij, 1 < i < j ~ 4 such that ~(rij,pij) = d(rij, Pjt

The optimal clustering consists of the 6 sets {rij,Pij,Pji}.

The optimal diameter is 1. We claim that the maximum dia-
meter of A‘s clusters must be at least 1 + W. Note that

~(r’i,j,, Pi2j2) 21 + tifor (~2, j2) # (ii, jl), (i2, j2) +

(jl, ii). AISO ~(~i,j,,ri,j,) > 2+tifor(il, jl) # (~2, j2).

If A puts any two rij in the same cluster, our claim is clearly
true. If all the rij are in separate clusters, each of the 6
clustersmustcontain one of them. Also one of the 6 clusters,
say C mustcontain boththepointsp~= andPY,. Then C must

have diameter at least 1 + W, since the rijin C must beat
distance at least 1 + W from one ofp~r and Pg,. Hencethe
performance ratio of A is at least 1 + W. ■

Finally, we can improve the randomized lower bound
slightly for the case of arbitrary metric spaces.

Themwm 16 For any t > 0 and k ~ 2, there is a lower
bound of 2 – con the performance ratio of any randomized
incremental algorithm.

Proofi We use Yao’s technique and show a lower bound
on deterministic algorithms on an appropriately chosen dis-
tribution. Let Abe a deterministic algorithm for incremental

clustering. The distribution on inputs is as follows, Initially,
the adversary provides n points P1, P2 . Pn such that the

distance between any two of them is 1. Then the adversary
partitions the n points into k disjoint sets S1, S2 . . . Sk at
random, such that all partitions are equally likely, Finally

the adversary provides k points Q1, Q2, . . . Qk, such that
d(Qi, Pj) = 1 if Pj c Si, d(Qil Pj) = 2 if Pj @ .$i,
d(Qi, Qj) = 3. Now, the diameter of the optimal solution

for any input in the distribution is 1, obtained by construct-

ing the k clusters Si U {Qi }. However, the incremental al-
gorithm can produce a clustering with diameter 1 only if the
clusters it produces after it sees points P1, P2. . . P~ are pre-

cisel y the sets Si (selected at random by the adversary). Let
Xk (n) be the number of ways to partition the n points into
k sets. Then the probability that the incremental algorithm

produces a clustering of diameter 1 is at most p = l/Xk(n).
Whh probability at least 1–p, the incremental algorithm pro-
duces a clustering of diameter at least 2. Thus the expected
value of the diameter of the clustering produced is at least
2 –p. Hence the expected value of the performance ratio is at
least 2 – p. By chosing n suitably large, Xk (n) can be made
arbitrarily large, and hence p can be made arbitrarily small,
in particular smaller than 6 for any fixed f >0. ■

6 Dual Clustering

We now consider the dual clustering problem: for a se-

quence of pointspl, PZ, . . . , ?% C %d, cover each point with a
unit ball in Rd as it arrives, so as to minimize the total number
of balls used. In the static case this problem is NP-Complete
and there is a PTAS for any fixed dimension [22]. We note
that in general metric spaces, it is not possible to achieve any
bounded ratio.

Our algorithm’s analysis is based on a theorem from com-
binatorial geometry called Roger’s theorem [36] (see also
Theorem 7.17 [33]), which says that Rd can be covered by

any convex shape with covering density O(d log d). Since
the volume of a radius 2 ball is 2d times the volume of a unit-
radius ball, the number of balls needed to cover a ball of ra-
dius 2 using balls of unit radius is f(d) = O(2dd logd). We
first describe an incremental algorithm which has perform-

ance ratio f(d). We also establish an asymptotic lower bound
‘“id); ford = 1 and 2, our proof yields lower‘f ‘(Ioglo log d

bounds of and 4, respectively.

Theorem 17 For the dual clustering problem in %d,
there is an incremental algorithm with performance ratio

0(2ddlogd).

Proofi Our algorithm maintains a set C of centers which

is a subset of the points that have arrived so f=, initially, C =

O. Define the range R(p) of a center p to be the sphere of
radius 2 about p. For any two centers pl and p2, we ensure
that d(pl, p2) >2. Associated with each center p is a set of

points I’(p) called the neighbors of p. For convenience, we
assume that p E 17(p). We ensure that all neighbors of p lie

633

in R(p). When a new point z is received, if z s R(p) for
some center p, we add z to r(p), breaking ties arbitrarily. If
no such center exists, x must be at a distance greater than 2
from all the existing centers. In this case, we make z a new

center and set I’(z) = {z}.

From Roger’s theorem on packing density a sphere of

radius 2 in 3?d can be covered by ~(d) = 0(2dd log d)
spheres of radius 1. When a new center p is created, we

fix a set of spheres S1 (p), S2 (p),..., Sf(d) (p) which cover
R(p). Whenever a point x is added to I’(p), if it is not already
covered by some previously placed sphere, we add the sphere
S.(p) where r is any value such that x E S,(p). Note
that such a sphere must exist as z e R(p) and the spheres

S1 (P) IS2 (P),.. ., sf(d)(P) cover R(P) completely.
Since no two centers can be covered by a sphere of unit

radius, any solution must use a separate sphere to cover each
center, Hence, the number of centers is a lower bound for

the number of spheres used by the optimal offline algorithm.
For each center p, the incremental algorithm uses at most
j(d) spheres to cover the points in 17(p). Hence, the per-
formance ratio of the incremental algorithm is bounded by
f(d) = o(2~dlogd). ■

The following theorem gives a lower bound for the dual
clustering problem.

Theorem18 For the dual clustering problem in ?Rd,
any incremental algorithm must have petiormance ratio

Proof The idea is as follows. At time t,when t points
have been given by the adversary, it will be the case that the
points PI, . . . , pt can be coveredby a ball of radius Rt < 1.
Then, the adversary will find a point pt+l lying outside the t

unit balls laid down by the algorithm so as to minimize the
radius Rc +1 of the ball required to cover all t + 1 points and

present that as a request. The game terminates when at some
time.4 +1, we have for the first time that Rk+l >1. Clearly,
k is a lower bound on the performance ratio since the points

PI, pk can be covered by a ball of radius Rk ~ 1, and
the algorithm has used k balls up to that point. It remains to

analyze the worst-case growth rate of Rt as a function oft.
Note that RI = Oand R2 = 1/2.

Let ad denote the volume of a unit ball in ?J?d. At time

t,let Dt be any ball of radius (at most) Rt that covers the

points pl, pt. For some d~to be specified later, define the
ball D; as a ball with the same center as Dt and with radius

Rt + c$t. We will choose c5~such that the volume of D: is at
least tad, implying that the current t unit balls placed by the
algorithm cannot cover the entire volume of D;. This would

imply that there is a choice of a point pt + 1 inside D; which
is not covered by the current t balls. It is also clear that the
new set oft + 1 points now can be covered by a ball of radius

at most Rt + Jt/2. implying that

Rt+l = Rt + $

To determine the value of c$t is easy, since we have the in-
equality that

~d(Rt +C$t)d > tad

from the requirement that the ball Dt have volume equal to

that oft unit balls. Now let Rt = 1 – ct. Substituting in the
above equations we obtain that:

Jt = 2(ft – tt+~)

* Rt + dt = 1 + Ct – 2Et+l

* ~d(l + Et – 2~t+l)d > tctd

Note that ~t – 2ct+l <1. Using the fact that ln(l +z) > x/2
for z <1, we see that choosing ~i such that

ft — %+1 _ In t
_—

2 d

will satisfy our requirements. Unfolding the recurrence,

Noting that c1 = 1, we obtain that ct+l ~ 2-t – 2d-1 lnt.
The lower bound is the smallest value oft for which Ct+l is
negative. Let tmo= be the largest value oft for which

This gives the desired lower bound.

■

Acknowledgements

We thank Pankaj Agarwal and Leonidas Guibas for help-

ful discussions, and for suggesting that we consider the dual
clustering problem.

References

[1]

[2]

[3]

[4]

M.S. Aldenderfer and R.K. Blashfield. Cluster Analysis.
Sage, Beverly Hills, 1984.
M. Bern and D. Eppstein. Approximation Algorithms for
Geometric Problems. In: D.S. Hochbaum, editor, Approx-
imation Algorithms for NP-Hard Problems. PWS Publishing
Company, 1996.
P. Brucker. On the complexity of clustering problems.
In: R. Henn, B. Korte, and W. Oletti, editors, Optimization
and Operations Research, Heidelberg, New York, NY, 1977,
pp. 45-54.
F. Can. Incremental Clustering for Dynamic Information Pro-
cessing. ACM Transactionson lnfornratwnProcessing Sys-
tems, 11 (1993), pp. 143-164.

634

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

F.Can and E.A. Ozkarahan, A Dynamic Cluster Maintenance
System for Information Retrieval. In Proceedings ofhe Tenth

Annual International ACM SIGIR Conference, 1987, pp. 123-
131.

F. Can and N.D. Drochak II. Incremental Clustering for Dy-
namic Document Databases. In Proceedings of the 1990 Sym-
posium on Applied Computing, 1990, pp. 61-67.

S. Chakrabarti, C. Phillips, A. Schulz, D.B. Shmoys, C. Stein,
and J. Wein. Improved Scheduling Algorithms for Minsum
Criteria. In Proceedings of the 23rd InternationalColloquium
on Automata,Languages and Programming,Springer, 1996.
B.B. Chaudhri.Dynamic clusteringfor time incrementaldata.
PatternRecognition Letters, 13 (1994), pp. 27-34.

D.R. Cutting, D.R. Karger, J.O. Pederson, and J.W. Tukey.
Scatter/Gather: A Cluster-based Approach to Browsing Large
Document Collections. In Proceedings of the 15thAnnual ln-
temational ACM SIGIR Conference, 1992, pp. 318-329.
D.R. Cutting, D.R. Karger, and J.O. Pederson. Constant
interaction-time Scatter/Gather Browsing of VeryLarge Doc-
ument Collections. In Proceedings of /he 16~hAnnual inter-
national ACM SIGIR Conference, 1993, pp. 126135.

R.O. Duda and l?E. Hart. Pattern Class@cation and Scene
Analysis. John Wiley & Sons, NY, 1973.

B. Everitt. Cluster Analysis. Heinemann Educational, Lon-

don, 1974.

C. Faloutsos and D.W. Oard. A Survey of Information Re-
trieval and Filtering Methods. Technical Report CS-TR-35 14,
Department of Computer Science, University of Maryland,
College Park, 1995.
T. Feder and D.H. Greene. Optimal Algorithms for Approx-
imate Clustering. In Proceedings of the Twentieth Annual
Symposium on T’hemyof Computing, 1988, pp. 434-444.
R.J. Fowler, M.S. Paterson, and S.L. Tanimoto. Optimal pack-
ing and covering in the plane are NP-complete. Informan”on
Processing Letrers, 12 (1981), pp. 133-137.

W.Frakes and R. Baeza-Yates, editors. InformationRetrieval:
Data StructuresandAlgorithms. Prentice-Hall, 1992.

M.R. Garey and D.S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, W.H. Freeman
and Company, 1979.
M. Goemans and J. Weinberg. An improved approximation
ratio for the minimum latency problem. In Proceedings of
the SeventhACM-SIAM Symposiumon Discrete Algorithms,
1996, pp. 152-157.

T.E. Gonzalez. Clustering to minimize the maximum inter-
cluster distance. Theoretical Computer Science, 38 (1985),
pp. 293-306.

J.A. Hartigan. ClusteringAlgorithms. Wiley, New York, NY,
1975.

D. Hoehbaum. Various Notions of Approximations: Good,
Better, Best, and More. In: D.S. Hochbaum, editor, Approx-
imationAlgorithmsfor NP-Hard Problems. PWS Publishing
Company, 1996.
D.S. Hochbaum and W. Maas. Approximation Schemes
for Covering and Packing Problems in Image Processing and
VLSI. Journal of the ACM, 32 (1985), pp. 130-135.

D.S. Hochbaum and D.B. Shmoys. A best possible heuristic
for the k-center problem. Mathematics of Operations Re-
search, 10 (1985), pp. 180-184.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

D.S. Hochbaum and D,B. Shmoys, A unified approach to ap-
proximation algorithms for bottleneck problems. Journal of
the ACM, 33 (1986), pp. 533–550.
S, lrani and A. Karlin. Online Computation. In: D.S. Hoch-
baum, editor, ApproximationAlgorithmsfor NP-Hard Prob-
lems. PWS PublishingCompany, 1996.
N. Jardineand C.J. van Rijsbergen. The Use of Hierarchical
Clusteringin Information Retrieval. InformationStorageand
Retrieval, 7 (1971), pp. 217-240.
A.K. Jain and R.C. Dubes. Algorithmsfor ClusteringData.
Prentice-Hall, NJ, 1988.
0. Kariv and S.L. Hakimi. An algorithmic approach to net-
work location problems, part I: the p-centers problem. SIAM
Journal of Applied Mathematics, 37 (1979), pp. 513-538.
N. Megiddo and K.J. Supowit. On the complexity of some
common geometric problems. SIAM .Jouma/ on Computing,
13 (1984), pp. 182-196.
S.G. Mentzer. Lower bounds on metric k-center problems.

Manuscript, 1988.

R. Motwani, S. Phillips and E. Tomg. Non-Claiwoyant
Scheduling, In Proceedings of the Fourth ACM-SIAM Sym-
posium on Discrete Algorithms, 1993, pp. 422-431. See also:
Theoretical ComputerScience, 130 (1994), pp. 1747.
E. Omiecinski and P. Scheuermann. A Global Approach to
Record Clustering and File Organization. In Proceedings of
the Third BCS-ACM Symposium on Research and Develop-
ment in Information Retrieval, 1984, pp. 201-219.
J. Path and P.K. Agarwal. Combinatorial Geometry. John
Wiley & Sons, New York, NY, 1995.
E. Rasmussen. Clustering Algorithms. Chapter 16 in:
W. Frakes and R. Baeza-Yates, editors, InformationRetrieval:
Data Structuresand Algorithms, Prentice-Hall, Englewood
Cliffs, NJ, 1992.
C.J. van Rijsbergen. Information Retrieval. Butterworths,
London, 1979.
C. Rogers. A note on coverings. Mathenratika, 4 (1957),
pp. 11-6.
G. Salton. Automatic Text Processing. Addison-Wesley,
Reading, MA, 1989.
G. Salton and M.J. McGill. Inmoduction to Modern informa-
tion Retrieval. McGraw-Hill Book Company, New York, NY,
1983.
P. Willett. Recent Trends in Hierarchical Document Cluster-
ing: A Critical Review. Informan”onProcessing & Manage-
ment, 24 (1988), pp. 577-597.
I.H. Witten, A. Moffat, and T.C. Bell. Managing Gigabytes:
Compressing and Indexing Documents andhnages. VanNos-
trand Reinhold, New York, NY, 1994.

635

